If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x+x-40=0
We add all the numbers together, and all the variables
x^2+3x-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| (3/4^15)/3/4^m=81/256 | | 2(0.8x+12)=3.6 | | 2x+8=−x+2 | | -5x+1=x+7 | | M/3+m=12 | | 3x+40=92 | | —4.6=r–3.3 | | 36-10(x+4)=6 | | 5(4x+1)=125 | | 3m+5/2=17/2 | | (1-x)^5=0.9 | | 3m+5/2=7/2 | | 10x-12=130 | | 16.60=3g+3.55 | | 16.6=3g+3.55 | | 9x-43=90 | | -3-5+3(2x+1)=6x-5 | | -2(3x-4)-(x+2)=-15 | | 5x=96-3x | | -0.5(16x-4)=2x-18 | | 2^(2n)=0.106 | | 5b-9b+9=41 | | 2^2n=0.106 | | n^2-4n-165=0 | | a5-13=-84 | | x-21=-46 | | -8x+2=2x-18 | | .06x=650 | | 50x1÷25=25 | | 4x+3-2x=13 | | 50x÷25=25 | | 132/3=n-1 |